EI SEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

New efficient synthesis of pyrimido[1,6-c]quinazolin-4-ones by a Biginelli 3CC/Staudinger/aza-Wittig sequence

Wen-Jing Li, Shuai Liu, Ping He, Ming-Wu Ding*

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, PR China

ARTICLE INFO

Article history: Received 23 June 2010 Received in revised form 16 August 2010 Accepted 17 August 2010 Available online 21 August 2010

ABSTRACT

Dihydropyrimidinone azides **1**, obtained from trimethylsilyl chloride-catalyzed Biginelli reaction of 2-azidobenzaldehyde, ethyl acetoacetate, and urea (or thiourea) at room temperature, reacted with triphenylphosphine to give iminophosphorane **2**. A tandem aza-Wittig reaction of iminophosphorane **2** with isocyanate, acyl chloride or CS_2 in the presence of K_2CO_3 or NEt_3 generated pyrimido[1,6-c]quinazolin-4-ones **4**, **6** or **8** in moderate to good yield.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The multicomponent reaction (MCR) was considered as a powerful synthetic tool for preparing target molecules of biological relevance in an efficient manner. In addition these MCRs involve the stepwise one-pot transformation of three or more reactants into a single product that contains portions of all the starting components and are especially suitable in combinatorial and medicinal chemistry. Other benefits of MCRs are the intrinsic labor and time-saving nature and the high purity of products they generate owing to their high selectivity.² The Biginelli reaction, one of the most useful multicomponent reactions, offers an efficient way to access multifunctionalized 3,4-dihydropyrimidin-2-(1H)-ones (DHPMs). Such heterocycles have proved to be efficient calcium channel modulators, mitotic kinesine inhibitors, adrenergic receptor antagonists, antibacterial and antiviral agents.³ Such a wide spectrum of biological activity allows consideration of the DHPMs structural unit as one of the most important drug-like scaffolds.⁴ Furthermore, most notable among these are the batzelladine alkaloids A and B, which inhibit the binding of HIV envelope protein gp-120 to human CD4 cells and, therefore, are potential new leads for AIDS therapy.⁵

In the study of the Biginelli multicomponent process much emphasis was placed on catalysts screening: various Bronsted and Lewis acids were reported to mediate the Biginelli reaction. However, far less attention has been paid to the further functionalization of the Biginelli adducts, in spite of the fact that the structures thus obtained may present significant biological activity.

The nitrogen-containing heterocyclic molecules, particularly with fused heterocyclic structures, have demonstrated a high degree of binding affinity when they serve as ligands for various biological receptors. Some of the fused Biginelli derived heterocycles have been attracted attention for medicinal chemistry in drug discovery area. For example, the thiazolo[3,2-a]pyrimidine **A** is a micromolar inhibitor of the group 2 GPCR metabotropic glutamate receptor, whereas pyrido[3,4-c]quinoline **B** has been used in the treatment of asthma (Fig. 1). However, despite of the important drug-like scaffolds of DHPMs, other fused DHPMs were less investigated previously and there is no report on synthesis of 3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-(thi)ones.

Figure 1. Examples of fused Biginelli derived heterocycles having biological activities.

The aza-Wittig reactions of iminophosphoranes have received increased attention in view of their utility in the synthesis of nitrogen heterocyclic compounds. Thus, it is envisioned that combining the efficiency of the Biginelli reaction with a post-condensation aza-Wittig reaction would facilitate access to a series of fused DHPMs, which are of considerable interest as potential biological active compounds or pharmaceuticals. Recently we have been interested in the synthesis of various heterocycles via aza-Wittig reaction, with the aim of evaluating their biological

^{*} Corresponding author. Tel.: +86 27 63158845; fax: +86 27 67862041; e-mail address: ding5229@yahoo.com.cn (M.-W. Ding).

activities. ¹⁰ Here we wish to report a fundamentally new approach to the synthesis of previously unreported 3,11b-dihydro-4*H*-pyrimido[1,6-*c*]quinazolin-4-(thi)ones by the Biginelli reaction between easily accessible 2-azidobenzaldehyde, ethyl acetoacetate, and (thio)ureas, followed by a Staudinger/aza-Wittig cyclization of the Biginelli products.

2. Results and discussion

Although many aldehydes were utilized in the Biginelli reaction, 2-azidobenzaldehyde was not used previously in the reaction to prepare corresponding tetrahydropyrimidine azides 1. It has been reported that the Biginelli reaction can be efficiently promoted by various acids such as HCl, Bi(OTf)₃, BF₃, H₃BO₃, LaX₃ (X=Cl, OTf), Yb (OTf)₃, In(OTf)₃, ZrCl₄, Mn(OAc)₃, FeCl₃·6H₂O, NiCl₃·6H₂O, RuCl₃, etc. as catalyst, however, many of the reactions were carried out at refluxing temperature, which is not suitable for preparing the thermal labile azides 1. Some catalysts, such as Me₃SiCl, Me₃SiI, SiCl₄, were also successfully utilized in the Biginelli reaction under room temperature condition. 11 Initially, the Biginelli reaction of 2-azidobenzaldehyde, ethyl acetoacetate, and urea was chosen as a model to optimize the reaction condition (Scheme 1). We used a CH₃CN/DMF (4:1) solution of 2-azidobenzaldehyde (3 mmol), ethyl acetoacetate (3 mmol), and urea (3.6 mmol) in the presence of HCl, H₂SO₄, or Me₃SiCl that was stirred at room temperature for 4 h (Table 1). With HCl and H₂SO₄ as catalysts, the desired product was formed only in moderate yields. TMSCl proved to be a very effective catalyst and provided high yield of the azide 1a as 0.5 equiv amount of it was used. Further increasing the amount of TMSCl (1.0 equiv) did not improve the product yield considerably.

$$\begin{array}{c|c} & & & \\ & & \\ EtOOC \\ & + \\ & \\ H_3C \end{array} \\ \begin{array}{c} \text{Catalyst} \\ \text{CH}_3\text{CN/DMF} \\ \text{r.t.} \end{array} \\ \begin{array}{c} \text{EtOOC} \\ \text{NH} \\ \text{H}_3\text{C} \\ \text{NO} \end{array} \\ \begin{array}{c} \text{NH} \\ \text{O} \\ \text{H}_3\text{C} \\ \text{NO} \end{array} \\ \begin{array}{c} \text{Tall} \\ \text$$

Scheme 1. Preparation of compound 1a.

Table 1Optimization of the reaction conditions

Entry	Catalyst Proportion		Yield ^a [%]
1	NON	_	0
2	HCl	1:1	61
3	HCl	1:0.5	46
4	H_2SO_4	1:1	50
5	H_2SO_4	1:0.5	33
6	TMSCl	1:0.1	46
7	TMSCl	1:0.2	52
8	TMSCl	1:0.5	91
9	TMSCl	1:1	92

^a Isolated yields of **1a** based on 2-azidobenzaldehyde.

With the optimized condition, various ureas and thioureas were employed for the Biginelli reaction in the presence of 0.5 equiv amount of Me₃SiCl (Scheme 2). All reactions proceeded smoothly to give the corresponding dihydropyrimidinone azides 1 (Table 2) in good yields at room temperature.

The obtained azides 1 were further reacted with triphenylphosphine, and the iminophosphoranes 2 was obtained in excellent isolated yields (88–94%) via Staudinger reaction (Scheme 3). When solutions of iminophosphoranes 2 in dry CH_2CI_2 or CH_3CN

EtOOC +
$$\frac{N_3}{R^1}$$
 $\frac{Me_3SiCl}{CH_3CN/DMF}$ EtOOC NH H_3C N X R^1

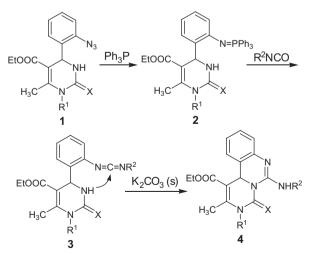

Scheme 2. Preparation of compounds 1.

Table 2Preparation of azides **1** via Biginelli reaction

Compd	Х	R^1	Yield ^a [%]
1a	0	H	91
1b	S	Н	90
1c	0	Et	77
1d	0	Me	87
1e	0	Ph	88
1f	S	Ph	82

^a Isolated yields of **1** based on 2-azidobenzaldehyde.

were treated with aromatic or aliphatic isocyanates at room or refluxing temperature, carbodiimides 3 were isolated in moderate to good yields. The direct cyclization of 3 to 4 through the addition of pyrimidinone NH to the carbodiimide moiety didn't occur under the reaction condition. This is probably due to the low nucleophilicity of the NH on the pyrimidinone ring. Heating of carbodiimide 3 in toluene resulted in a complex mixture owning to the unstablity of the carbodiimide 3 at high temperature. However, in the presence of catalytic amount of potassium carbonate in CH₃CN at room temperature, carbodiimides 3 cyclized easily to give pyrimido[1,6-c]quinazolin-4-ones 4 in moderate to good overall yields (Scheme 3, Table 3). It's noteworthy that the reaction proceeds under mild conditions to give various substituted pyrimido[1,6-c] quinazolin-4-ones, and the overall transformation can be run in a one-pot procedure from azides 1, or with isolation of the intermediate iminophosphoranes 2 or carbodiimides 3.

Scheme 3. Preparation of compounds **4**.

The reaction of iminophosphoranes 2 with CS_2 in refluxing CH_3CN also gave the isothiocyanate 5. In the presence of catalytic amount of potassium carbonate in CH_3CN , 5 was easily transferred into 6 in good yield (Scheme 4).

Table 3 Preparation of compounds **4** and **6**

Compd	X	\mathbb{R}^1	R^2	Yield ^a [%]
4a	S	Н	Ph	57
4b	0	Н	Ph	59
4c	S	Н	i-Pr	85
4d	S	Н	$4-Cl-C_6H_4$	57
4e	0	Et	Ph	60
4f	0	Н	i-Pr	75
4g	0	Me	Ph	64
4h	0	Ph	Ph	75
4i	О	Ph	i-Pr	64
4j	0	Me	i-Pr	78
4k	S	Н	$3-Me-C_6H_4$	72
41	0	Me	$4-Cl-C_6H_4$	60
4m	0	Ph	$4-Cl-C_6H_4$	69
4n	О	Me	$4-F-C_6H_4$	62
40	О	Ph	$4-F-C_6H_4$	69
4p	0	Et	i-Pr	73
4q	S	Ph	Ph	72
4r	S	Ph	i-Pr	77
6a	S	Н		86
6b	0	Н		82

^a Isolated yields based on iminophosphorane **2**.

Scheme 4. Preparation of compounds **6**.

Iminophosphoranes $\bf 2$ reacted with acyl chlorides in the presence of triethylamine in CH₃CN at refluxing temperature to give directly 2-substituted pyrimido[1,6-c]quinazolines $\bf 8$ in good yields (61–92%, Table 4, Scheme 5). The formation of $\bf 8$ can be viewed as an

Table 4Preparation of compounds **8** from iminophosphoranes **2**

Compd	Х	R ¹	R^2	Yield ^a [%]
8a	S	Н	Ph	65
8b	S	Н	$3-Cl-C_6H_4$	61
8c	0	Me	Ph	81
8d	0	Ph	Ph	84
8e	0	Me	4 -Me $-C_6H_4$	80
8f	0	Ph	4 -Me $-C_6H_4$	81
8g	0	Me	$2-Cl-C_6H_4$	76
8h	0	Ph	$2-Cl-C_6H_4$	79
8i	0	Me	$3-Cl-C_6H_4$	81
8j	0	Ph	$3-Cl-C_6H_4$	81
8k	0	Me	$2-F-C_6H_4$	80
81	0	Me	$4-F-C_6H_4$	63
8m	S	Ph	Ph	88
8n	S	Ph	$4-NO_2-C_6H_4$	90
80	S	Ph	$3-Cl-C_6H_4$	77
8p	S	Ph	4 -Me $-C_6H_4$	74
8q	S	Ph	$2-Cl-C_6H_4$	92

^a Isolated yields based on iminophosphorane **2**.

EtOOC NH
$$R^2$$
 R^2 R^2 R^2 R^3 R^4 R^2 R^4 R^2 R^4 R^2 R^4 R^2 R^4 R^4 R^2 R^4 R^4

Scheme 5. Preparation of compounds 8.

initial aza-Wittig reaction between the iminophosphorane **2** and acyl chloride in presence of triethylamine affording the intermediate imidoyl chloride **7**, which undergoes cyclization to give **8**.

The structure of pyrimido[1,6-c]quinazolines **4**, **6**, and **8** was confirmed by their spectrum data. Furthermore a single crystal of **8a** was obtained from a CH₂Cl₂ solution of **8a**. X-ray structure analysis verified again the proposed structure (Fig. 2).

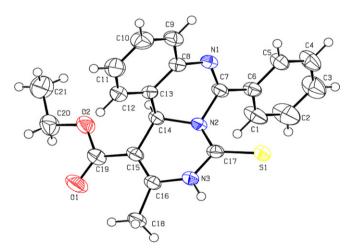


Figure 2. ORTEP diagram of the crystal structure of tricyclic compound $8a\ (50\%$ thermal ellipsoids).

3. Conclusion

We have developed a new MCR, yielding 3,11b-dihydro-4*H*-pyrimido[1,6-*c*]quinazolin-4-(thi)ones, by a sequence of a trimethylsilyl chloride-catalyzed Biginelli reaction, Staudinger reaction and a tandem aza-Wittig ring closure. This method utilizes easily accessible starting material and allows mild reaction conditions, straightforward product isolation, and good yields.

4. Experimental

4.1. General

Melting points were uncorrected. MS were measured on a Finnigan Trace MS spectrometer. IR were recorded on a PE-983 infrared spectrometer as KBr pellets with absorption in cm⁻¹. NMR

were recorded in CDCl₃ or DMSO- d_6 on a Varian Mercury 400 or 600 spectrometer and resonances relative to TMS. Elementary analyses were taken on a Vario EL III elementary analysis instrument. The X-ray diffraction data were collected on a *Bruker SMART AXS CCD* diffractometer, Mo K α , 2θ =1.86–27.50°. 2-Azidobenzaldehyde was easily prepared from the reaction of sodium azide with 2-nitrobenzaldehyde according to the literature reports.¹²

4.2. Synthesis of azides 1 via Biginelli reaction

4.2.1. 4-(2-Azidophenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one (1a). 2-Azidobenzaldehyde (0.29 g, 2.0 mmol), urea (0.14 g, 2.4 mmol), and ethyl acetoacetate (0.26 g, 2.0 mmol) were added to acetonitrile/DMF (4 mL/1 mL) sequentially at room temperature. After the addition of Me₃SiCl (0.11 g, 1.0 mmol), the mixture was stirred for 4 h at ambient temperature. The crude product was collected by filtration and washed with ethanol to give 0.55 g (91%) of azide 1a as white solid. Mp: 206–208 °C. IR (KBr): 3242, 3112, 2957, 2128, 1716, 1702, 1637 cm⁻¹. ¹H NMR (DMSO- d_6 , 600 MHz): δ 9.20 (s, 1H, NH), 7.55 (s, 1H, NH), 7.36–7.16 (m, 4H, Ar–H), 5.44 (s, 1H, CH), 3.90 (q, J=7.2 Hz, 2H, OCH₂), 2.29 (s, 3H, CH₃), 1.00 (t, J=7.2 Hz, 3H, CH₃). MS m/z: 272 (M⁺-N₂-1, 2), 200 (11), 155 (10), 103 (14), 42 (100). Anal. Calcd for C₁₄H₁₅N₅O₃: C, 55.81; H, 5.02; N, 23.24. Found: C, 55.63; H, 5.17; N, 23.46.

4.2.2. 4-(2-Azidophenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidine-2(1H)-thione (**1b**). Operation as above with thiourea (0.18 g, 2.4 mmol), compound **1b** (0.57 g, 90%) was also isolated as white solid. Mp: 176–177 °C. IR (KBr): 3402, 3198, 2984, 2124, 1710 cm⁻¹. ¹H NMR (CDCl₃, 600 MHz): δ 8.03 (s, 1H, NH), 7.36–7.09 (m, 5H, Ar–H), 5.69 (d, J=3.0 Hz, 1H, CH), 4.06 (q, J=7.2 Hz, 2H, OCH₂), 2.44 (s, 3H, CH₃), 1.10 (t, J=7.2 Hz, 3H, CH₃). Anal. Calcd for C₁₄H₁₅N₅O₂S: C, 52.98; H, 4.76; N, 22.07. Found: C, 52.84; H, 4.79; N, 22.26.

4.2.3. 4-(2-Azidophenyl)-5-ethoxycarbonyl-1-ethyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one (**1c**). Operation as above with 1-ethylurea (0.21 g, 2.4 mmol), compound **1c** (0.51 g, 77%) was also isolated as white solid. Mp: 143–145 °C. IR (KBr): 3406, 3218, 2988, 2957, 2127, 1682 cm $^{-1}$. ¹H NMR (CDCl₃, 600 MHz): δ 7.32–7.04 (m, 4H, Ar–H), 5.73 (s, 1H, NH), 5.57 (s, 1H, CH), 4.06–4.03 (m, 2H, OCH₂), 3.92–3.66 (m, 2H, NCH₂), 2.63 (s, 3H, CH₃), 1.17 (t, *J*=7.2 Hz, 3H, CH₃), 1.09 (t, *J*=7.2 Hz, 3H, CH₃). MS *m/z*: 329 (M⁺, 2), 300 (20), 228 (100), 200 (48), 185 (34), 70 (52). Anal. Calcd for C₁₆H₁₉N₅O₃: C, 58.35; H, 5.81; N, 21.26. Found: C, 58.38; H, 5.71; N, 21.51.

4.2.4. 4-(2-Azidophenyl)-1,6-dimethyl-5-ethoxycarbonyl-3,4-dihydropyrimidin-2(1H)-one (**1d**). Operation as above with 1-methylurea (0.18 g, 2.4 mmol), compound **1d** (0.55 g, 87%) was also isolated as white solid. Mp: 158–160 °C. IR (KBr): 3422, 3239, 2926, 2129, 1680 cm $^{-1}$. ¹H NMR (CDCl₃, 600 MHz): δ 7.32–7.05 (m, 4H, Ar–H), 5.76 (s, 1H, NH), 5.59 (s, 1H, CH), 4.05 (q, J=7.2 Hz, 2H, OCH₂), 3.19 (s, 3H, NCH₃), 2.62 (s, 3H, CH₃), 1.10 (t, J=7.2 Hz, 3H, CH₃). Anal. Calcd for C₁₅H₁₇N₅O₃: C, 57.13; H, 5.43; N, 22.21. Found: C, 57.35; H, 5.21; N, 22.37.

4.2.5. 4-(2-Azidophenyl)-5-ethoxycarbonyl-6-methyl-1-phenyl-3,4-dihydropyrimidin-2(1H)-one (1e). Operation as above with 1-phenylurea (0.33 g, 2.4 mmol), compound 1e (0.66 g, 88%) was also isolated as white solid. Mp: 211–213 °C. IR (KBr): 3351, 2979, 2130, 1685 cm⁻¹. 1 H NMR (CDCl $_{3}$, 600 MHz): δ 7.44–7.14 (m, 9H, Ar–H), 5.85 (s, 1H, NH), 5.70 (s, 1H), 4.04–4.12 (m, 2H, OCH $_{2}$), 2.21 (s, 3H, CH $_{3}$), 1.12 (t, J=7.2 Hz, 3H, CH $_{3}$). Anal. Calcd for

 $C_{20}H_{19}N_5O_3$: C, 63.65; H, 5.07; N, 18.56. Found: C, 63.74; H, 5.01; N, 18.75.

4.2.6. 4-(2-Azidophenyl)-5-ethoxycarbonyl-6-methyl-1-phenyl-3,4-dihydropyrimidine-2(1H)-thione (1 \mathbf{f}). Operation as above with 1-phenylthiourea (0.36 g, 2.4 mmol), compound 1 \mathbf{f} (0.64 g, 82%) was also isolated as white solid. Mp: 179–181 °C. IR (KBr): 3410, 3157, 2130, 1702, 1685 cm⁻¹. ¹H NMR (CDCl₃, 600 MHz): δ 7.70–7.16 (m, 9H, Ar–H), 7.00 (br s, 1H, NH), 5.70 (d, J=3.2 Hz, 1H, CH), 4.13–4.06 (m, 2H, OCH₂), 2.22 (s, 3H, CH₃), 1.12 (t, J=7.2 Hz, 3H, CH₃). Anal. Calcd for C₂₀H₁₉N₅O₂S: C, 61.05; H, 4.87; N, 17.80. Found: C, 61.28; H, 4.63; N, 17.95.

4.3. Synthesis of the iminophosphoranes 2 via Staudinger reaction

4.3.1. 5-Ethoxycarbonyl-6-methyl-4-(2-(triphenylphosphoranylideneamino)phenyl)-3,4-dihydropyrimidin-2(1H)-one (2a). To a stirred solution of azide 1a (0.60 g, 2 mmol) in CH₂Cl₂ (10 mL) was added dropwise triphenylphosphine (0.52 g, 2 mmol) in CH₂Cl₂ (5 mL) at room temperature. After the reaction mixture was stirred for 2 h at ambient temperature, the solvent was removed off under reduced pressure and the residual was recrystallized from methylene dichloride/petroleum ether to give 0.96 g (90%) of iminophosphorane 2a as white solid. Mp: 253-255 °C. IR (KBr): 3242, 3112, 2957, 1716, 1702, 1637 cm⁻¹. ¹H NMR (CDCl₃, 600 MHz): δ 7.77–7.45 (m, 15H, Ar–H), 7.17 (s, 1H, NH), 7.04 (s, 1H, NH), 6.94 (d, *J*=4.8 Hz, 1H, Ar-H), 6.78–6.75 (m, 1H, Ar-H), 6.57 (t, *J*=7.2 Hz, 1H, Ar-H), 6.40 (d, *J*=7.8 Hz, 1H, Ar-H), 6.17 (s, 1H, CH), 4.06 (q, J=7.2 Hz, 2H, OCH₂), 2.45 (s, 3H, CH₃), 1.06 (t, J=7.2 Hz, 3H, CH₃). MS *m*/*z*: 535 (M⁺, 56), 462 (8), 277 (30), 262 (100), 183 (54). Anal. Calcd for C₃₂H₃₀N₃O₃P: C, 71.76; H, 5.65; N, 7.85. Found: C, 71.95; H, 5.51; N, 7.95.

4.3.2. 5-Ethoxycarbonyl-6-methyl-4-(2-(triphenylphosphoranylideneamino)phenyl)-3,4-dihydropyrimidine-2(1H)-thione (**2b**). Operation as above with azide **1b** (0.63 g, 2 mmol), compound **2b** (0.97 g, 88%) was also isolated as white solid. Mp: 242–244 °C. IR (KBr): 3236, 3118, 2956, 1711, 1702, 1638 cm $^{-1}$. ¹H NMR (CDCl₃, 600 MHz): δ 8.79 (s, 1H, NH), 7.79–7.38 (m, 16H, Ar–H and NH), 6.90–6.38 (m, 4H, Ar–H), 6.19 (s, 1H, CH), 4.08 (q, J=7.2 Hz, 2H, OCH₂), 2.43 (s, 3H, CH₃), 1.08 (t, J=7.2 Hz, 3H, CH₃). MS m/z: 551 (M $^+$, 53), 478 (20), 277 (34), 262 (100), 183 (52), 108 (18). Anal. Calcd for C₃₂H₃₀N₃O₂PS: C, 69.67; H, 5.48; N, 7.62. Found: C, 69.41; H, 5.24; N, 7.76.

4.3.3. 5-Ethoxycarbonyl-1-ethyl-6-methyl-4-(2-(triphenylphosphoranylideneamino)phenyl)-3,4-dihydropyrimidin-2(1H)-one (2c). Operation as above with azide 1c (0.66 g, 2 mmol), compound 2c (1.06 g, 94%) was also isolated as white solid. Mp: 195–197 °C. IR (KBr): 3240, 3110, 2958, 1714, 1700, 1641 cm $^{-1}$. 1 H NMR (CDCl₃, 600 MHz): δ 7.77–6.38 (m, 20H, Ar–H and NH), 6.09 (s, 1H, CH), 4.08–4.03 (m, 2H, OCH₂), 3.86–3.65 (m, 2H, NCH₂), 2.65 (s, 3H, CH₃), 1.15 (t, J=7.2 Hz, 3H, CH₃), 1.04 (t, J=7.2 Hz, 3H, CH₃). MS m/z: 563 (M $^+$, 100), 534 (21), 490 (7), 300 (14), 262 (86), 183 (23). Anal. Calcd for C₃₄H₃₄N₃O₃P: C, 72.45; H, 6.08; N, 7.46. Found: C, 72.23; H, 6.22; N, 7.21.

4.3.4. 1,6-Dimethyl-5-ethoxycarbonyl-4-(2-(triphenylphosphoranylideneamino)phenyl)-3,4-dihydropyrimidin-2(1H)-one (**2d**). Operation as above with azide **1d** (0.63 g, 2 mmol), compound **2d** (1.00 g, 91%) was also isolated as light yellow solid. Mp: 212–214 °C. ¹H NMR (CDCl₃, 600 MHz): δ 7.77–7.46 (m, 15H, Ar–H), 7.05–6.38 (m, 5H, Ar–H and NH), 6.09 (s, 1H, CH), 4.06 (q, J=7.2 Hz, 2H, OCH₂), 3.17 (s, 3H, NCH₃), 2.63 (s, 3H, CH₃), 1.05 (t, J=7.2 Hz, 3H, CH₃). MS m/z: 549 (M⁺, 20), 476 (8), 286 (13), 277 (14), 262 (100),

183 (52), 56 (44). Anal. Calcd for C₃₃H₃₂N₃O₃P: C, 72.12; H, 5.87; N, 7.65. Found: C, 72.04; H, 5.70; N, 7.91.

4.3.5. 5-Ethoxycarbonyl-6-methyl-1-phenyl-4-(2-(triphenylphosphoranylideneamino)phenyl)-3,4-dihydropyrimidin-2(1H)-one (**2e**). Operation as above with azide **1e** (0.75 g, 2 mmol), compound **2e** (1.12 g, 92%) was also isolated as light yellow solid. Mp: 230–232 °C. 1 H NMR (CDCl₃, 600 MHz): δ 7.78–6.41 (m, 25H, Ar–H and NH), 6.21 (s, 1H, CH), 4.13–4.05 (m, 2H, OCH₂), 2.22 (s, 3H, CH₃), 1.09 (t, J=7.2 Hz, 3H, CH₃). Anal. Calcd for C₃₈H₃₄N₃O₃P: C, 74.62; H, 5.60; N, 6.87. Found: C, 74.87; H, 5.63; N, 6.72.

4.3.6. 5-Ethoxycarbonyl-6-methyl-1-phenyl-4-(2-(triphenylphosphoranylideneamino)phenyl)-3,4-dihydropyrimi dine-2(1H)-thione (**2f**). Operation as above with azide **1f** (0.63 g, 2 mmol), compound **2f** (1.00 g, 93%) was also isolated as white solid. Mp: 229–230 °C. IR (KBr): 3244, 3116, 2958, 1714, 1708, 1635 cm $^{-1}$. ¹H NMR (CDCl₃, 600 MHz): δ 9.04 (s, 1H, NH), 7.82–6.40 (m, 24H, Ar $^{-1}$ H), 6.21 (s, 1H, CH), 4.17–4.08 (m, 2H, OCH₂), 2.22 (s, 3H, CH₃), 1.12 (t, J=7.2 Hz, 3H, CH₃). Anal. Calcd for C₃₈H₃₄N₃O₂PS: C, 72.71; H, 5.46; N, 6.69. Found: C, 72.64; H, 5.42; N, 6.88.

4.4. Synthesis of pyrimido[1,6-c]quinazolin-4-ones 4

4.4.1. 1-Ethoxycarbonyl-6-phenylamino-2-methyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazoline-4-thione (4a). To a solution of iminophosphorane 2b (0.55 g, 1 mmol) in CH₃CN (10 mL) was added phenylisocyanate (0.12 g, 1 mmol) under nitrogen at room temperature. After stirred for 2 h at room temperature, K₂CO₃ (0.014 g, 0.1 mmol) was added and the mixture was stirred for 1 h. The solvent was removed off under reduced pressure and the residue was recrystallized from methylene dichloride and ethanol to give 0.22 g (57%) of compound 4a as light yellow solid. Mp: 160–161 °C. IR (KBr): 3297, 1634, 1591 cm⁻¹. ¹H NMR (CDCl₃, 600 MHz): δ 7.93 (s, 1H, NH), 7.75–6.85 (m, 10H, Ar–H and NH), 5.64 (s, 1H, CH), 4.25 (q, J=7.2 Hz, 2H, OCH₂), 2.43 (s, 3H, CH₃), 1.23 (t, J=7.2 Hz, 3H, CH₃). MS m/z: 392 (M⁺, 100), 319 (20), 300 (21), 260 (55), 181 (14). Anal. Calcd for C₂₁H₂₀N₄O₂S: C, 64.27; H, 5.14; N, 14.28. Found: C, 64.16; H, 5.17; N, 14.53.

4.4.2. 1-Ethoxycarbonyl-6-phenylamino-2-methyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (**4b**). Operation as above with iminophosphorane **2a** (0.54 g, 1 mmol) at room temperature for 2 h, compound **4b** (0.22 g, 59%) was also isolated as white solid. Mp: 247–249 °C. IR (KBr): 3300, 1706, 1648 cm $^{-1}$. ¹H NMR (CDCl₃, 600 MHz): δ 8.22 (s, 1H, NH), 7.67 (d, J=7.8 Hz, 2H, Ar $^{-1}$ H), 7.58 (s, 1H, NH), 7.30–6.83 (m, 7H, Ar $^{-1}$ H), 5.54 (s, 1H, CH), 4.23–4.17 (m, 2H, OCH₂), 2.31 (s, 3H, CH₃), 1.21 (t, J=7.2 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 165.5, 150.8, 147.3, 144.2, 142.7, 138.8, 128.8, 128.6, 127.3, 123.5, 123.2, 122.8, 119.6, 97.5, 60.5, 53.9, 18.3, 14.1. MS m/z: 376 (M $^{+}$, 100), 347 (54), 302 (46), 260 (23), 220 (27), 77 (50). Anal. Calcd for C₂₁H₂₀N₄O₃: C, 67.01; H, 5.36; N, 14.88. Found: C, 67.17; H, 5.18; N, 14.85.

4.4.3. 1-Ethoxycarbonyl-6-isopropylamino-2-methyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazoline-4-thione (**4c**). Operation as above with isopropylisocyanate (0.09 g, 1 mmol) at refluxing temperature for 4 h, compound **4c** (0.30 g, 85%) was also isolated as light yellow solid. Mp: 216–218 °C. IR (KBr): 3365, 3124, 2982, 1700, 1646 cm⁻¹.

¹H NMR (CDCl₃, 600 MHz): δ 7.88 (s, 1H, NH), 7.26–6.79 (m, 4H, Ar–H), 5.51 (s, 1H, CH), 5.17 (s, 1H, NH), 4.28–4.19 (m, 3H, OCH₂ and NCH), 2.39 (s, 3H, CH₃), 1.38 (d, J=6.6 Hz, 3H, CH₃), 1.30 (d, J=6.6 Hz, 3H, CH₃), 1.22 (t, J=7.2 Hz, 3H, CH₃).

¹³C NMR (CDCl₃, 100 MHz): δ 175.3, 165.4, 148.0, 143.7, 143.4, 128.8, 127.2, 122.7, 122.6, 122.5, 99.5, 60.6, 54.3, 44.0, 22.8, 21.7, 17.6, 14.1. MS m/z: 358 (M⁺, 100), 325 (21%), 301 (23%), 269 (26%), 226 (95%), 184 (53%), 169 (46%).

Anal. Calcd for C₁₈H₂₂N₄O₂S: C, 60.31; H, 6.19; N, 15.63. Found: C, 60.12; H, 6.26; N, 15.68.

4.4.4. 6-(4-Chlorophenylamino)-1-ethoxycarbonyl-2-methyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazoline-4-thione (**4d**). Operation as above with 4-chlorophenylisocyanate (0.15 g, 1 mmol) at room temperature for 1 h, compound **4d** (0.24 g, 57%) was also isolated as white solid. Mp: 214–216 °C. IR (KBr): 3434, 3336, 2992, 1692, 1640 cm $^{-1}$. H NMR (CDCl₃, 600 MHz): δ 7.96 (s, 1H, NH), 7.69–6.85 (m, 9H, Ar–H and NH), 5.63 (s, 1H, CH), 4.28–4.22 (m, 2H, OCH₂), 2.42 (s, 3H, CH₃), 1.23 (t, J=7.2 Hz, 3H, CH₃). 13 C NMR (CDCl₃, 100 MHz): δ 175.4, 165.2, 144.8, 143.4, 142.1, 136.7, 129.0, 128.9, 128.6, 127.3, 124.0, 123.3, 122.8, 121.1, 99.8, 60.8, 54.5, 18.0, 14.2. MS m/z: 426 (M $^+$, 29), 293 (34), 280 (16), 256 (13), 127 (100), 110 (29). Anal. Calcd for C₂₁H₁₉ClN₄O₂S: C, 59.08; H, 4.49; N, 13.12. Found: C, 59.29; H, 4.25; N, 13.03.

4.4.5. 1-Ethoxycarbonyl-3-ethyl-6-phenylamino-2-methyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (4e). Operation as above with iminophosphorane 2c (0.56 g, 1 mmol) at room temperature for 2 h, compound 4e (0.24 g, 60%) was also isolated as white solid. Mp: 201–203 °C. IR (KBr): 3310, 1668, 1635 cm⁻¹. ¹H NMR (CDCl₃, 600 MHz): δ 7.74–6.87 (m, 10H, Ar–H and NH), 5.50 (s, 1H, CH), 4.27–4.22 (m, 2H, OCH₂), 3.65–3.72 (m, 2H, NCH₂), 2.63 (s, 3H, CH₃), 1.19 (t, J=6.6 Hz, 3H, CH₃), 1.11 (t, J=7.2 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 165.9, 150.8, 149.4, 145.5, 143.1, 138.9, 128.6, 128.5, 127.3, 123.3, 122.9, 122.5, 119.6, 100.6, 60.5, 52.5, 38.8, 15.9, 14.5, 14.1. MS m/z: 404 (M⁺, 100), 374 (45), 330 (28), 286 (29), 227 (32), 92 (95). Anal. Calcd for C₂₃H₂₄N₄O₃: C, 68.30; H, 5.98; N, 13.85. Found: C, 68.27; H, 5.84; N, 13.96.

4.4.6. 1-Ethoxycarbonyl-6-isopropylamino-2-methyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (4f). Operation as above with iminophosphorane 2a (0.54 g, 1 mmol) and isopropylisocyanate (0.09 g, 1 mmol) at refluxing temperature for 4 h, compound 4f (0.26 g, 75%) was also isolated as white solid. Mp: 280–282 °C. IR (KBr): 3113, 2967, 1696, 1648 cm $^{-1}$. ¹H NMR (CDCl₃, 600 MHz): δ 7.79 (s, 1H, NH), 7.23–6.79 (m, 4H, Ar–H), 5.46 (s, 1H, CH), 5.16 (d, J=6.0 Hz, 1H, NH), 4.28–4.17 (m, 3H, NCH and OCH₂), 2.38 (s, 3H, CH₃), 1.28 (d, J=6.6 Hz, 6H, 2CH₃), 1.18 (t, J=7.2 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 165.6, 150.6, 147.4, 146.7, 143.9, 128.4, 127.0, 122.6, 122.4, 97.6, 60.3, 53.8, 43.7, 22.8, 22.3, 18.1, 14.1. MS m/z: 342 (M⁺, 100), 313 (30), 271 (26), 226 (19), 210 (19), 184 (13). Anal. Calcd for C₁₈H₂₂N₄O₃: C, 63.14; H, 6.48; N, 16.36. Found: C, 63.06; H, 6.53; N, 16.10.

4.4.7. 2,3-Dimethyl-1-ethoxycarbonyl-6-phenylamino-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (**4g**). Operation as above with iminophosphorane **2d** (0.55 g, 1 mmol) at room temperature for 4 h, compound **4g** (0.25 g, 64%) was also isolated as white solid. Mp: 235–237 °C. IR (KBr): 3331, 1679, 1634 cm⁻¹. ¹H NMR (CDCl₃, 600 MHz): δ 7.76–6.87 (m, 10H, Ar–H and NH), 5.53 (s, 1H, CH), 4.25–4.20 (m, 2H, OCH₂), 3.16 (s, 3H, CH₃), 2.61 (s, 3H, CH₃), 1.20 (t, J=7.2 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 165.8, 151.2, 149.9, 145.2, 143.2, 138.8, 128.7, 128.6, 127.3, 123.4, 123.2, 123.0, 122.6, 119.6, 100.2, 60.6, 52.5, 30.9, 16.7, 14.1. MS m/z: 390 (M⁺, 25), 361 (26), 317 (13), 260 (11), 243 (18), 212 (20), 92 (100). Anal. Calcd for C₂₂H₂₂N₄O₃: C, 67.68; H, 5.68; N, 14.35. Found: C, 67.54; H, 5.75; N, 14.21.

4.4.8. 1-Ethoxycarbonyl-2-methyl-3-phenyl-6-phenylamino-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (**4h**). Operation as above with iminophosphorane **2e** (0.61 g, 1 mmol) at room temperature for 3 h, compound **4h** (0.34 g, 75%) was also isolated as white solid. Mp: 206–208 °C. ¹H NMR (CDCl₃, 400 MHz):

 δ 7.69–6.97 (m, 15H, Ar–H and NH), 5.68 (s, 1H, CH), 4.24 (q, J=7.2 Hz, 2H, OCH₂), 2.20 (s, 3H, CH₃), 1.21 (t, J=7.2 Hz, 3H, CH₃). 13 C NMR (CDCl₃, 100 MHz): δ 165.6, 150.6, 149.5, 145.1, 143.3, 138.8, 136.6, 129.2, 129.1, 129.0, 128.6, 128.4, 127.2, 123.4, 123.0, 122.9, 122.4, 119.7, 101.1, 60.6, 53.1, 18.5, 14.1. MS m/z: 452 (M⁺−1, 26), 423 (13), 378 (12), 258 (10), 145 (21), 118 (66), 77 (100). Anal. Calcd for C₂₇H₂₄N₄O₃: C, 71.67; H, 5.35; N, 12.38. Found: C, 71.72; H, 5.30; N, 12.24.

4.4.9. 1-Ethoxycarbonyl-6-isopropylamino-2-methyl-3-phenyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (**4i**). Operation as above with iminophosphorane **2e** (0.61 g, 1 mmol) and isopropylisocyanate (0.09 g, 1 mmol) at refluxing temperature for 4 h, compound **4i** (0.27 g, 64%) was also isolated as white solid. Mp: 200-202 °C. IR (KBr): 3340, 2972, 1693, 1629 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.38–6.92 (m, 9H, Ar–H), 5.55 (s, 1H, CH), 5.16 (d, J=8.0 Hz, 1H, NH), 4.30–4.19 (m, 3H, OCH₂ and NCH), 2.18 (s, 3H, CH₃), 1.27 (d, J=6.8 Hz, 6H, 2CH₃), 1.20 (t, J=7.2 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 165.7, 150.4, 149.2, 148.1, 144.2, 136.9, 129.2, 128.7, 128.5, 128.4, 127.0, 122.4, 122.3, 122.2, 100.7, 60.4, 53.0, 43.5, 22.5, 21.9, 18.4, 14.0. MS m/z: 418 (M⁺, 100), 389 (56), 344 (36), 304 (30), 274 (29), 118 (87). Anal. Calcd for C₂₄H₂₆N₄O₃: C, 68.88; H, 6.26; N, 13.39. Found: C, 68.63; H, 6.12; N, 13.57.

4.4.10. 2,3-Dimethyl-1-ethoxycarbonyl-6-isopropylamino-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (**4j**). Operation as above with iminophosphorane **2d** (0.55 g, 1 mmol) and isopropylisocyanate (0.09 g, 1 mmol) at refluxing temperature for 4 h, compound **4j** (0.28 g, 78%) was also isolated as white solid. Mp: 154–156 °C. IR (KBr): 3366, 2974, 1685, 1631 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.25–6.81 (m, 4H, Ar–H), 5.41 (s, 1H, CH), 5.02 (d, J=8.0 Hz, 1H, NH), 4.31–4.17 (m, 3H, OCH₂ and NCH), 3.13 (s, 3H, NCH₃), 2.59 (s, 3H, CH₃), 1.33 (d, J=6.4 Hz, 3H, CH₃), 1.29 (d, J=6.4 Hz, 3H, CH₃), 1.18 (t, J=7.2 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 165.9, 151.2, 149.8, 148.4, 144.2, 128.4, 127.0, 122.5, 122.4, 122.2, 100.2, 60.4, 52.4, 43.6, 30.7, 22.7, 22.1, 16.6, 14.1. MS m/z: 355 (M⁺−1, 100), 326 (27), 286 (9), 240 (11), 44 (9). Anal. Calcd for C₁₉H₂₄N₄O₃: C, 64.03; H, 6.79; N, 15.72. Found: C, 64.27; H, 6.78; N, 15.53.

4.4.11. 1-Ethoxycarbonyl-2-methyl-6-(3-methylphenylamino)-3,11b-dihydro-4H-pyrimido[1,6-c]quinazoline-4-thione (**4k**). Operation as above with 3-methylphenylisocyanate (0.13 g, 1 mmol) at room temperature for 4 h, compound **4k** (0.29 g, 72%) was also isolated as white solid. Mp: 136–138 °C. IR (KBr): 3393, 2979, 1635, 1588 cm⁻¹.

¹H NMR (CDCl₃, 400 MHz): δ 8.02 (s, 1H, NH), 7.59–6.84 (m, 9H, Ar–H and NH), 5.64 (s, 1H, CH), 4.26–4.23 (m, 2H, OCH₂), 2.42 (s, 3H, CH₃), 2.39 (s, 3H, CH₃), 1.23 (t, *J*=7.2 Hz, 3H, CH₃).

¹³C NMR (CDCl₃, 100 MHz): δ 175.5, 165.3, 145.1, 143.8, 142.6, 138.8, 137.9, 128.9, 128.8, 127.5, 124.6, 123.7, 123.4, 122.8, 120.4, 117.1, 99.7, 60.8, 54.4, 21.6, 17.8, 14.2. MS m/z: 406 (M⁺, 1), 376 (7), 275 (86), 216 (34), 170 (40), 128 (86), 76 (100). Anal. Calcd for C₂₂H₂₂N₄O₂S: C, 65.00; H, 5.46; N, 13.78. Found: C, 65.24; H, 5.32; N, 13.85.

4.4.12. 6-(4-Chlorophenylamino)-2,3-dimethyl-1-ethoxycarbonyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (4I). Operation as above with iminophosphorane 2d (0.55 g, 1 mmol) and 4-chlorophenylisocyanate (0.15 g, 1 mmol) at room temperature for 1 h, compound 4I (0.25 g, 60%) was also isolated as white solid. Mp: 204–205 °C. IR (KBr): 3328, 1680, 1634 cm $^{-1}$. ¹H NMR (CDCl₃, 400 MHz): δ 7.70 (d, J=8.8 Hz, 2H, Ar $^{-}$ H), 7.38 (s, 1H, NH), 7.30–6.87 (m, 6H, Ar $^{-}$ H), 5.52 (s, 1H, CH), 4.24–4.21 (m, 2H, OCH₂), 3.16 (s, 3H, NCH₃), 2.62 (s, 3H, CH₃), 1.20 (t, J=7.2 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 165.7, 151.3, 149.8, 144.9, 142.9, 137.6, 128.7, 128.6, 127.8, 127.2, 123.6, 123.1, 122.7, 120.6, 100.4, 60.7, 52.5, 30.9, 16.7, 14.2. MS m/z: 424 (M $^{+}$, 100), 395 (56), 350 (48), 242 (28),

75 (16), 56 (95). Anal. Calcd for C₂₂H₂₁ClN₄O₃:, C, 62.19; H, 4.98; N, 13.19. Found: C, 62.16; H, 4.73; N, 13.28.

4.4.13. 6-(4-Chlorophenylamino)-2-methyl-3-phenyl-1-ethoxy-carbonyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (4m). Operation as above with iminophosphorane **2e** (0.61 g, 1 mmol) and 4-chlorophenylisocyanate (0.15 g, 1 mmol) at room temperature for 2 h, compound 4m (0.34 g, 69%) was also isolated as white solid. Mp: 153–155 °C. IR (KBr): 3304, 1675, 1631 cm $^{-1}$. 1 H NMR (CDCl₃, 400 MHz): δ 7.64–7.00 (m, 14H), 5.66 (s, 1H), 4.26 (q, J=7.2 Hz, 2H), 2.21 (s, 3H), 1.23 (t, J=7.2 Hz, 3H). MS m/z: 486 (M $^{+}$, 100), 457 (69), 412 (31), 275 (22), 118 (59), 77 (35). Anal. Calcd for C₂₇H₂₃ClN₄O₃: C, 66.60; H, 4.76; N, 11.51. Found: C, 66.75; H, 4.54; N, 11.78.

4.4.14. 2,3-Dimethyl-1-ethoxycarbonyl-6-(4-fluorophenylamino)-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (**4n**). Operation as above with iminophosphorane **2d** (0.55 g, 1 mmol) and 4-fluorophenylisocyanate (0.14 g, 1 mmol) at room temperature for 1 h, compound **4n** (0.25 g, 62%) was also isolated as white solid. Mp: 203–204 °C. IR (KBr): 3309, 1676, 1634 cm $^{-1}$. ¹H NMR (CDCl₃, 400 MHz): δ 7.72–6.87 (m, 9H), 5.52 (s, 1H), 4.25–4.21 (m, 2H), 3.16 (s, 3H), 2.62 (s, 3H), 1.20 (t, J=7.2 Hz, 3H). MS m/z: 408 (M $^+$, 100), 379 (67), 334 (48), 242 (30), 213 (22), 56 (41). Anal. Calcd for C₂₂H₂₁FN₄O₃: C, 64.70; H, 5.18; N, 13.72. Found: C, 64.78; H, 5.33; N. 13.57.

4.4.15. 1-Ethoxycarbonyl-6-(4-fluorophenylamino)-2-methyl-3-phenyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (**4o**). Operation as above with iminophosphorane **2e** (0.61 g, 1 mmol) and 4-fluorophenylisocyanate (0.14 g, 1 mmol) at room temperature for 2 h, compound **4o** (0.32 g, 69%) was also isolated as white solid. Mp: 126–128 °C. IR (KBr): 3312, 2981, 1677, 1635 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 6.95–7.66 (m, 14H, Ar–H and NH), 5.67 (s, 1H, CH), 4.25 (q, J=7.2 Hz, 2H, OCH₂), 2.21 (s, 3H, CH₃), 1.22 (t, J=7.2 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 165.6, 159.8, 157.4, 150.9, 149.5, 145.1, 143.2, 136.7, 134.9, 129.5, 128.8, 128.7, 127.2, 123.6, 123.1, 122.5, 121.3, 121.2, 115.1, 114.9, 101.4, 60.8, 53.2, 18.5, 14.2. MS m/z: 470 (M⁺, 100), 441 (64), 396 (39), 304 (18), 275 (20), 118 (43), 77 (34). Anal. Calcd for C₂₇H₂₃FN₄O₃: C, 68.93; H, 4.93; N, 11.91. Found: C, 68.68; H, 4.74; N, 11.95.

4.4.16. 1-Ethoxycarbonyl-3-ethyl-6-isopropylamino-2-methyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (**4p**). Operation as above with iminophosphorane **2c** (0.56 g, 1 mmol) and isopropylisocyanate (0.09 g, 1 mmol) at refluxing temperature for 4 h, compound **4p** (0.27 g, 73%) was also isolated as white solid. Mp: 94–96 °C. IR (KBr): 3350, 2977, 1685, 1630 cm $^{-1}$. ¹H NMR (CDCl₃, 400 MHz): δ 7.24–6.81 (m, 4H, Ar–H), 5.37 (s, 1H, CH), 5.01 (d, J=7.6 Hz, 1H, NH), 4.31–4.16 (m, 3H, OCH₂ and NCH), 3.70–3.63 (m, 2H, NCH₂), 2.61 (s, 3H, CH₃), 1.37–1.09 (m, 12H, 4CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 166.0, 150.6, 149.2, 148.6, 144.1, 128.3, 127.1, 122.4, 122.3, 122.2, 100.4, 60.3, 52.4, 43.5, 38.6, 22.7, 22.1, 15.9, 14.6, 14.1. MS m/z: 370 (M $^+$, 20), 341 (6), 299 (8), 227 (16), 69 (100). Anal. Calcd for C₂₀H₂₆N₄O₃: C, 64.84; H, 7.07; N, 15.12. Found: C, 64.93; H, 7.21; N, 15.04.

4.4.17. 1-Ethoxycarbonyl-2-methyl-3-phenyl-6-phenyl amino-3,11b-dihydro-4H-pyrimido[1,6-c]quinazoline-4-thione (**4q**). Operation as above with iminophosphorane **2f** (0.63 g, 1 mmol) at room temperature for 2 h, compound **4q** (0.34 g, 72%) was also isolated as white solid. Mp: 224–225 °C. IR (KBr): 3410, 2982, 1681, 1637 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.75–6.73 (m, 15H, Ar–H and NH), 5.64 (s, 1H, CH), 4.30–4.24 (m, 2H, OCH₂), 2.21 (s, 3H, CH₃), 1.24 (t, J=7.2 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 179.8, 165.6, 147.4, 147.0, 143.1, 140.5, 138.5, 130.7, 129.6, 128.9, 128.7, 128.4, 127.4, 123.7,

123.4, 123.3, 122.4, 119.8, 104.0, 60.9, 53.6, 18.8, 14.1. MS m/z: 469 (M⁺+1, 23), 360 (11), 349 (10), 118 (23), 77 (100). Anal. Calcd for C₂₇H₂₄N₄O₂S: C, 69.21; H, 5.16; N, 11.96. Found: C, 69.15; H, 5.28; N, 11.73.

4.4.18. 1-Ethoxycarbonyl-6-isopropylamino-2-methyl-3-phenyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazoline-4-thione (**4r**). Operation as above with iminophosphorane **2f** (0.63 g, 1 mmol) isopropylisocyanate (0.09 g, 1 mmol) at refluxing temperature for 4 h, compound **4r** (0.33 g, 77%) was also isolated as white solid. Mp: 170–172 °C. IR (KBr): 3386, 2974, 1740, 1635 cm⁻¹.
¹H NMR (CDCl₃, 400 MHz): δ 7.44–6.71 (m, 9H, Ar–H), 5.51 (s, 1H, CH), 4.85 (d, J=7.6 Hz, 1H, NH), 4.29–4.22 (m, 3H, OCH₂ and NCH), 2.18 (s, 3H, CH₃), 1.35–1.22 (m, 9H, 3CH₃).
¹³C NMR (CDCl₃, 100 MHz): δ 180.0, 165.7, 150.0, 147.3, 144.1, 140.7, 130.7, 129.6, 128.8, 128.6, 127.2, 122.9, 122.6, 122.2, 104.0, 60.8, 53.6, 44.0, 22.9, 21.7, 18.8, 14.2. MS m/z: 434 (M⁺, 1), 220 (2), 195 (3), 135 (5), 118 (20), 77 (100), 43 (69). Anal. Calcd for C₂₄H₂₆N₄O₂S: C, 66.33; H, 6.03; N, 12.89. Found: C, 66.26; H, 6.17; N, 12.81.

4.5. Synthesis of pyrimido[1,6-c]quinazolin-4-ones 6

4.5.1. 1-Ethoxycarbonyl-2-methyl-7,11b-dihydro-4H-pyrimido[1,6-c]quinazoline-4,6(1H)-dithione (6a). To a solution of iminophosphorane 2b (0.55 g, 1 mmol) in CH₃CN (5 mL) was added CS₂ (5.0 mL) at room temperature. After the reaction mixture was refluxed for 12 h, K₂CO₃ (0.014 g, 0.1 mmol) was added and the mixture was stirred for 2 h. The white precipitated solid was collected by filtration and washed with ethanol to give 0.29 g (86%) of **6a** as white solid. Mp: 195–197 °C. IR (KBr): 3445, 3289, 3143, 3000, 1668, 1520 cm⁻¹. ¹H NMR (DMSO- d_6 , 600 MHz): δ 12.97 (s, 1H, NH), 11.06 (s, 1H, NH), 7.35-6.93 (m, 4H, Ar-H), 5.41 (s, 1H, CH), 4.17–4.13 (m, 2H, OCH₂), 2.38 (s, 3H, CH₃), 1.15 (t, *J*=7.2 Hz, 3H, CH₃). ¹³C NMR (DMSO- d_6 , 100 MHz): δ 179.1, 175.2, 164.8, 145.9, 135.8, 129.0, 127.5, 124.9, 123.5, 115.8, 97.6, 60.0, 52.9, 16.9, 14.1. MS *m/z*: 334 (M⁺+1, 14), 300 (47), 259 (100), 225 (47), 140 (48). Anal. Calcd for C₁₅H₁₅N₃O₂S₂: C, 54.03; H, 4.53; N, 12.60. Found: C, 54.16; H, 4.51; N, 12.36.

4.5.2. 1-Ethoxycarbonyl-2-methyl-6-thioxo-3,6,7,11b-tetrahydro-4H-pyrimido[1,6-c]quinazolin-4-one (**6b**). Operation as above with iminophosphorane **2a** (0.54 g, 1 mmol), compound **6b** (0.26 g, 82%) was also isolated as white solid. Mp: 252–254 °C. IR (KBr): 3427, 3160, 2994, 1668, 1706, 1664 cm $^{-1}$. ¹H NMR (DMSO- d_6 , 600 MHz): δ 12.63 (s, 1H), 9.94 (s, 1H), 7.36–6.90 (m, 4H), 5.33 (s, 1H), 4.15–4.10 (m, 2H), 2.34 (s, 3H), 1.12 (t, J=7.2 Hz, 3H). ¹³C NMR (DMSO- d_6 , 100 MHz): δ 178.2, 164.8, 149.1, 147.8, 136.0, 128.7, 127.1, 124.6, 123.2, 115.3, 94.9, 59.7, 53.4, 17.6, 14.1. MS m/z: 317 (M $^+$, 11), 284 (19), 243 (100), 154 (66), 136 (54). Anal. Calcd for C₁₅H₁₅N₃O₃S: C, 56.77; H, 4.76; N, 13.24. Found: C, 56.88; H, 4.72; N, 13.28.

4.6. Synthesis of pyrimido[1,6-c]quinazolin-4-ones 8

4.6.1. 1-ethoxycarbonyl-2-methyl-6-phenyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazoline-4-thione (8a). To a solution of iminophosphorane 2b (0.55 g, 1 mmol) and benzoyl chloride (0.14 g, 1 mmol) in CH₃CN (10 mL) was added NEt₃ (0.28 g, 2 mmol). The mixture was stirred at reflux temperature for 6 h and then cooled to room temperature. The white precipitated solid was collected by filtration and recrystallized from methylene dichloride/petroleum ether to give 0.25 g (65%) of 8a as yellow crystals. Mp: 259–261 °C. ¹H NMR (CDCl₃, 600 MHz): δ 8.10–6.96 (m, 10H, Ar–H and NH), 5.50 (s, 1H, CH), 4.26 (q, J=7.2 Hz, 2H, OCH₂), 2.46 (s, 3H, CH₃), 1.24 (t, J=7.2 Hz, 3H, CH₃). MS m/z: 377 (M⁺, 100), 348 (61), 304 (64), 271 (22), 245 (61), 77 (56), 42 (63). Anal. Calcd for

C₂₁H₁₉N₃O₂S: C, 66.82; H, 5.07; N, 11.13. Found: C, 66.85; H, 5.21; N, 11.06.

4.6.2. 6-(3-Chlorophenyl)-1-ethoxycarbonyl-2-methyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazoline-4-thione (**8b**). Operation as above with 3-chlorobenzoyl chloride (0.18 g, 1 mmol) for 4 h, **8b** (0.25 g, 61%) was also isolated as white solid. Mp: 267–268 °C. ¹H NMR (CDCl₃, 600 MHz): δ 8.10–6.98 (m, 9H, Ar–H and NH), 5.49 (s, 1H, CH), 4.27 (q, J=6.6 Hz, 2H, OCH₂), 2.46 (s, 3H, CH₃), 1.26 (t, J=7.2 Hz, 3H, CH₃). MS m/z: 411 (M⁺, 100), 382 (37), 365 (48), 337 (44), 279 (35), 215 (19), 83 (17). Anal. Calcd for C₂₁H₁₈ClN₃O₂S: C, 61.23; H, 4.40; N, 10.20. Found: C, 61.43; H, 4.56; N, 10.14.

4.6.3. 2,3-Dimethyl-1-ethoxycarbonyl-6-phenyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (**8c**). Operation as above with iminophosphorane **2d** (0.55 g, 1 mmol) for 6 h, **8c** (0.30 g, 81%) was also isolated as white solid. Mp: 156–157 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.09–6.97 (m, 9H, Ar–H), 5.44 (s, 1H, CH), 4.24 (q, J=7.2 Hz, 2H, OCH₂), 3.13 (s, 3H, NCH₃), 2.67 (s, 3H, CH₃), 1.21 (t, J=7.2 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 165.9, 154.6, 150.8, 150.4, 142.4, 134.7, 131.2, 129.0, 128.5, 128.4, 128.2, 126.9, 125.0, 122.7, 99.7, 60.5, 51.8, 30.6, 16.9, 14.1. MS m/z: 375 (M⁺, 100), 346 (99), 301 (93), 271 (23), 178 (17), 103 (14), 77 (11). Anal. Calcd for C₂₂H₂₁N₃O₃: C, 70.38; H, 5.64; N, 11.19. Found: C, 70.14; H, 5.87; N, 11.15.

4.6.4. 3,6-Diphenyl-1-ethoxycarbonyl-2-methyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one ($\it 8d$). Operation as above with iminophosphorane $\it 2e$ (0.61 g, 1 mmol) for 4 h, $\it 8d$ (0.37 g, 84%) was also isolated as white solid. Mp: 210–211 °C. ¹H NMR (CDCl₃, 400 MHz): $\it \delta$ 8.10–6.82 (m, 14H, Ar–H), 5.55 (s, 1H, CH), 4.31–4.23 (m, 2H, OCH₂), 2.28 (s, 3H, CH₃), 1.24 (t, $\it J$ =7.2 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): $\it \delta$ 165.9, 154.6, 150.4, 149.9, 142.6, 136.7, 134.7, 131.3, 130.1, 129.1, 128.9, 128.8, 128.6, 128.4, 128.2, 127.2, 125.2, 122.6, 100.8, 60.7, 52.3, 18.8, 14.2. MS $\it m/z$: 437 (M⁺, 38), 408 (100), 362 (57), 271 (51), 243 (63), 180 (36), 118 (27). Anal. Calcd for C₂₇H₂₃N₃O₃: C, 74.12; H, 5.30; N, 9.60. Found: C, 74.15; H, 5.46; N, 9.41.

4.6.5. 2,3-Dimethyl-1-ethoxycarbonyl-6-(4-methylphenyl)-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (**8e**). Operation as above with iminophosphorane **2d** (0.55 g, 1 mmol) and 4-methylbenzoyl chloride (0.15 g, 1 mmol) for 8 h, **8e** (0.31 g, 80%) was also isolated as white solid. Mp: 199–200 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.96 (d, J=8.4 Hz, 2H, Ar—H), 7.47–6.96 (m, 6H, Ar—H), 5.42 (s, 1H, CH), 4.28–4.19 (m, 2H, OCH₂), 3.12 (s, 3H, NCH₃), 2.67 (s, 3H, CH₃), 2.41 (s, 3H, CH₃), 1.21 (t, J=7.2 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 166.0, 154.6, 150.8, 150.4, 142.6, 141.7, 132.0, 129.2, 129.0, 128.4, 128.2, 126.7, 124.9, 122.7, 99.7, 60.5, 51.8, 30.6, 21.5, 16.9, 14.1. MS m/z: 389 (M⁺, 91), 360 (97), 301 (100), 285 (18), 223 (22), 56 (65). Anal. Calcd for C₂₃H₂₃N₃O₃: C, 70.93; H, 5.95; N, 10.79. Found: C, 70.71; H, 5.74; N, 10.81.

4.6.6. 1-Ethoxycarbonyl-2-methyl-6-(4-methylphenyl)-3-phenyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (**8f**). Operation as above with iminophosphorane **2e** (0.61 g, 1 mmol) and 4-methylbenzoyl chloride (0.15 g, 1 mmol) for 8 h, **8f** (0.37 g, 81%) was also isolated as white solid. Mp: 205–206 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.98 (d, J=8.4 Hz, 2H, Ar–H), 7.49–6.80 (m, 11H, Ar–H), 5.53 (s, 1H, CH), 4.30–4.24 (m, 2H, OCH₂), 2.39 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 1.24 (t, J=7.2 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 166.0, 154.7, 150.5, 150.0, 142.9, 141.8, 136.9, 132.1, 129.4, 129.3, 129.1, 128.6, 128.5, 128.4, 128.3, 127.0, 125.2, 122.6, 100.9, 60.7, 52.4, 21.6, 18.9, 14.2. MS m/z: 452 (M⁺+1, 12), 422 (79), 375 (36), 259 (57), 220 (65), 213 (60), 193 (100), 118 (52). Anal. Calcd

for $C_{28}H_{25}N_3O_3$: C, 74.48; H, 5.58; N, 9.31. Found: C, 74.37; H, 5.75; N, 9.38.

4.6.7. 6-(2-Chlorophenyl)-2,3-dimethyl-1-ethoxycarbonyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (**8g**). Operation as above with iminophosphorane **2d** (0.55 g, 1 mmol) and 2-chlorobenzoyl chloride (0.18 g, 1 mmol) for 8 h, **8g** (0.31 g, 76%) was also isolated as white solid. Mp: 156–157 °C. 1 H NMR (CDCl₃, 400 MHz): δ 7.90–6.98 (m, 8H, Ar–H), 5.65 (s, 1H, CH), 4.32–4.19 (m, 2H, OCH₂), 3.11 (s, 3H, NCH₃), 2.63 (s, 3H, CH₃), 1.22 (t, *J*=7.2 Hz, 3H, CH₃). 13 C NMR (CDCl₃, 100 MHz): δ 165.8, 152.7, 149.8, 148.4, 141.9, 135.0, 132.0, 131.3, 130.8, 129.7, 128.8, 128.2, 127.2, 126.7, 124.6, 122.9, 98.9, 60.4, 51.7, 30.3, 16.8, 13.9. MS m/z: 409 (M⁺, 60), 378 (100), 336 (50), 301 (25), 55 (88). Anal. Calcd for $C_{22}H_{20}$ ClN₃O₃: C, 64.47; H, 4.92; N, 10.25. Found: C, 64.68; H, 4.74; N, 10.07.

4.6.8. 6-(2-Chlorophenyl)-1-ethoxycarbonyl-2-methyl-3-phenyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one ($\it{8h}$). Operation as above with iminophosphorane $\it{2e}$ (0.61 g, 1 mmol) and 2-chlorobenzoyl chloride (0.18 g, 1 mmol) for 8 h, $\it{8h}$ (0.37 g, 79%) was also isolated as white solid. Mp: 207–208 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.88–6.94 (m, 13H, Ar–H), 5.76 (s, 1H, CH), 4.34–4.22 (m, 2H, OCH₂), 2.22 (s, 3H, CH₃), 1.24 (t, \it{J} =7.2 Hz, 3H, CH₃). MS $\it{m/z}$: 471 (M⁺, 47), 422 (100), 397 (43), 250 (53), 215 (76), 118 (44). Anal. Calcd for C₂₇H₂₂ClN₃O₃: C, 68.71; H, 4.70; N, 8.90. Found: C, 68.48; H, 4.84; N, 8.75.

4.6.9. 6-(3-Chlorophenyl)-2,3-dimethyl-1-ethoxycarbonyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one ($\it{8i}$). Operation as above with iminophosphorane $\it{2d}$ (0.55 g, 1 mmol) and 3-chlorobenzoyl chloride (0.18 g, 1 mmol) for 4 h, $\it{8i}$ (0.33 g, 81%) was also isolated as white solid. Mp: 190–192 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.05 (s, 1H, Ar–H), 7.95 (d, \it{J} =7.6 Hz, 1H, Ar–H), 7.49–6.97 (m, 6H, Ar–H), 5.43 (s, 1H, CH), 4.26–4.23 (m, 2H, OCH₂), 3.13 (s, 3H, NCH₃), 2.68 (s, 3H, CH₃), 1.22 (t, \it{J} =7.2 Hz, 3H, CH₃). MS $\it{m/z}$: 410 (M⁺+1, 73), 379 (100), 335 (69), 301 (25), 244 (13), 212 (12), 136 (12), 77 (13). Anal. Calcd for C₂₂H₂₀ClN₃O₃: C, 64.47; H, 4.92; N, 10.25. Found: C, 64.63; H, 4.76; N, 10.28.

4.6.10. 6-(3-Chlorophenyl)-1-ethoxycarbonyl-2-methyl-3-phenyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one ($\bf 8j$). Operation as above with iminophosphorane $\bf 2e$ (0.61 g, 1 mmol) and 3-chlorobenzoyl chloride (0.18 g, 1 mmol) for 4 h, $\bf 8j$ (0.38 g, 81%) was also isolated as white solid. Mp: 154–155 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.05 (s, 1H, Ar–H), 7.98 (d, $\it J$ =7.6 Hz, 1H, Ar–H), 7.51–6.82 (m, 11H, Ar–H), 5.54 (s, 1H, CH), 4.31–4.26 (m, 2H, OCH₂), 2.28 (s, 3H, CH₃), 1.25 (t, $\it J$ =7.2 Hz, 3H, CH₃). MS $\it m/z$: 471 (M⁺, 63), 441 (100), 397 (67), 280 (41), 210 (20), 118 (52). Anal. Calcd for C₂₇H₂₂ClN₃O₃: C, 68.71; H, 4.70; N, 8.90. Found: C, 68.54; H, 4.85; N, 8.78.

4.6.11. 2,3-Dimethyl-1-ethoxycarbonyl-6-(2-fluorophenyl)-3,11b-dihydro-4H-pyrimido[1,6-c]quinazolin-4-one (8k). Operation as above with iminophosphorane 2d (0.55 g, 1 mmol) and 2-fluorobenzoyl chloride (0.14 g, 1 mmol) for 4 h, 8k (0.31 g, 80%) was also isolated as white solid. Mp: 195–196 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.33–6.99 (m, 8H, Ar–H), 5.48 (s, 1H, CH), 4.31–4.21 (m, 2H, OCH₂), 3.13 (s, 3H, NCH₃), 2.68 (s, 3H, CH₃), 1.23 (t, J=7.2 Hz, 3H, CH₃). MS m/z: 393 (M⁺, 2), 307 (11), 184 (21), 118 (100), 77 (71). Anal. Calcd for C₂₂H₂₀FN₃O₃: C, 67.17; H, 5.12; N, 10.68. Found: C, 67.39; H, 5.04; N, 10.41.

4.6.12. 2,3-Dimethyl-1-ethoxycarbonyl-6-(4-fluorophenyl)-3,11b-di-hydro-4H-pyrimido[1,6-c]quinazolin-4-one (81). Operation as above with iminophosphorane 2d (0.55 g, 1 mmol) and 4-fluorobenzoyl chloride (0.14 g, 1 mmol) for 4 h, 81 (0.25 g, 63%) was also isolated as

white solid. Mp: 201-203 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.10–6.97 (m, 8H, Ar–H), 5.42 (s, 1H, CH), 4.27–4.20 (m, 2H, OCH₂), 3.12 (s, 3H, NCH₃), 2.67 (s, 3H, CH₃), 1.21 (t, J=7.2 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 166.0, 153.6, 150.8, 150.5, 142.4, 131.1, 130.5, 130.4, 129.0, 128.9, 128.6, 127.1, 125.1, 122.8, 115.7, 115.5, 100.0, 60.6, 51.9, 30.7, 17.0, 14.2. MS m/z: 393 (M⁺, 21), 364 (42), 348 (6), 262 (13), 197 (12), 56 (100). Anal. Calcd for C₂₂H₂₀FN₃O₃: C, 67.17: H, 5.12: N, 10.68. Found: C, 67.36: H, 5.02: N, 10.89.

4.6.13. 3,6-diphenyl-1-ethoxycarbonyl-2-methyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazoline-4-thione (**8m**). Operation as above with iminophosphorane **2f** (0.63 g, 1 mmol) for 6 h, **8m** (0.40 g, 88%) was also isolated as white solid. Mp: 230–232 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.19–6.72 (m, 14H, Ar–H), 5.49 (s, 1H, CH), 4.30–4.22 (m, 2H, OCH₂), 2.27 (s, 3H, CH₃), 1.23 (t, J=7.2 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 179.0, 165.8, 155.8, 148.1, 142.5, 140.1, 134.8, 131.2, 130.9, 129.5, 128.9, 128.7, 128.5, 128.2, 128.0, 127.2, 125.3, 122.5, 103.3, 60.9, 52.8, 19.0, 14.2. MS m/z: 453 (M⁺, 38), 308 (53), 188 (47), 118 (100), 77 (86). Anal. Calcd for C₂₇H₂₃N₃O₂S: C, 71.50; H, 5.11; N, 9.26. Found: C, 71.67; H, 5.01; N, 9.03.

4.6.14. 1-Ethoxycarbonyl-2-methyl-6-(4-nitrophenyl)-3-phenyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazoline-4-thione (8n). Operation as above with iminophosphorane 2f (0.63 g, 1 mmol) and 4-nitrobenzoyl chloride (0.16 g, 1 mmol) for 4 h, 8n (0.45 g, 90%) was also isolated as yellow solid. Mp: 280–282 °C. ^1H NMR (CDCl3, 400 MHz): δ 8.33–6.72 (m, 13H, Ar–H), 5.51 (s, 1H, CH), 4.36–4.24 (m, 2H, OCH2), 2.28 (s, 3H, CH3), 1.25 (t, J=7.2 Hz, 3H, CH3). ^{13}C NMR (CDCl3, 100 MHz): δ 178.8, 165.6, 153.7, 148.6, 148.0, 142.0, 141.0, 139.8, 131.1, 129.6, 129.2, 128.9, 128.8, 128.7, 128.4, 125.8, 123.8, 122.8, 103.5, 61.1, 52.8, 19.1, 14.2. MS m/z: 498 (M+, 47), 425 (67), 390 (65), 290 (45), 244 (39), 118 (71), 77 (100). Anal. Calcd for C27H22N4O4S: C, 65.05; H, 4.45; N, 11.24. Found: C, 65.28; H, 4.57; N, 11.18.

4.6.15. 1-Ethoxycarbonyl-2-methyl-6-(4-nitrophenyl)-3-phenyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazoline-4-thione (**8o**). Operation as above with iminophosphorane **2f** (0.63 g, 1 mmol) and 3-chlorobenzoyl chloride (0.18 g, 1 mmol) for 4 h, **8o** (0.38 g, 77%) was also isolated as white solid. Mp: 173–175 °C. 1 H NMR (CDCl₃, 400 MHz): δ 8.14 (s, 1H, Ar–H), 8.04 (d, J=7.2 Hz, 1H, Ar–H), 7.54–6.71 (m, 11H, Ar–H), 5.46 (s, 1H, CH), 4.29–4.23 (m, 2H, OCH₂), 2.27 (s, 3H, CH₃), 1.24 (t, J=7.2 Hz, 3H, CH₃). 13 C NMR (CDCl₃, 100 MHz): δ 179.0, 165.6, 154.5, 148.0, 142.2, 139.9, 136.8, 134.4, 131.1, 130.6, 129.7, 129.5, 129.0, 128.7, 128.0, 127.8, 127.6, 126.2, 125.4, 122.6, 103.4, 60.9, 52.8, 19.0, 14.1. MS m/z: 487 (M⁺, 12), 307 (61), 188 (22), 118 (82), 77 (100), 44 (39). Anal. Calcd for C₂₇H₂₂ClN₃O₂S: C, 66.45; H, 4.54; N, 8.61. Found: C, 66.31; H, 4.68; N, 8.87.

4.6.16. 1-Ethoxycarbonyl-2-methyl-6-(4-methylphenyl)-3-phenyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazoline-4-thione (**8p**). Operation as above with iminophosphorane **2f** (0.63 g, 1 mmol) and 4-methylbenzoyl chloride (0.15 g, 1 mmol) for 8 h, **8p** (0.35 g, 74%) was also isolated as white solid. Mp: 172–173 °C. 1 H NMR (CDCl₃, 400 MHz): δ 8.07 (d, J=8.0 Hz, 2H, Ar–H), 7.52–6.70 (m, 11H, Ar–H), 5.47 (s, 1H, CH), 4.28–4.23 (m, 2H, OCH₂), 2.40 (s, 3H, CH₃), 2.26 (s, 3H, CH₃), 1.23 (t, J=7.2 Hz, 3H, CH₃). MS m/z: 468 (M⁺+1, 6), 118 (58), 104 (24), 92 (10), 77 (100). Anal. Calcd for C₂₈H₂₅N₃O₂S: C, 71.92; H, 5.39; N, 8.99. Found: C, 71.84; H, 5.48; N, 8.82.

4.6.17. 6-(2-chlorophenyl)-1-ethoxycarbonyl-2-methyl-3-phenyl-3,11b-dihydro-4H-pyrimido[1,6-c]quinazoline-4-thione (**8q**). Operation as above with iminophosphorane **2f** (0.63 g, 1 mmol) and 2-chlorobenzoyl chloride (0.18 g, 1 mmol) for 6 h, **8q**

(0.38 g, 92%) was also isolated as white solid. Mp: 205–206 °C. 1 H NMR (CDCl₃, 400 MHz): δ 8.06 (d, J=7.2 Hz, 1H), 7.56–6.82 (m, 12H), 5.73 (s, 1H), 4.35–4.23 (m, 2H), 2.22 (s, 3H), 1.24 (t, J=7.2 Hz, 3H). 13 C NMR (CDCl₃, 100 MHz): δ 176.0, 165.9, 153.9, 147.3, 142.0, 140.2, 134.9, 133.0, 131.1, 130.6, 130.0, 129.3, 129.2, 128.7, 128.6, 128.2, 127.6, 126.7, 125.3, 122.5, 102.1, 60.9, 52.9, 19.2, 14.1. MS m/z: 487 (M⁺, 19), 425 (4), 384 (100), 175 (6), 137 (7), 118 (24), 89 (20), 77 (100). Anal. Calcd for C_{27} H₂₂ClN₃O₂S: C, 66.45; H, 4.54; N, 8.61. Found: C, 66.65; H, 4.69; N, 8.57.

4.7. Isolation of some of the intermediates 3 and 5

4.7.1. 5-Ethoxycarbonyl-6-methyl-4-(2-((phenylimino)methyleneamino)phenyl)-3,4-dihydropyrimidin-2(1H)-one (3b). To a stirred solution of azide **1a** (0.30 g, 1 mmol) in CH₂Cl₂ (10 mL) was added dropwise triphenylphosphine (0.26 g, 1 mmol) in CH₂Cl₂ (5 mL) at room temperature. After the reaction mixture was stirred for 2 h at ambient temperature, phenylisocyanate (0.12 g, 1 mmol) was added under nitrogen at room temperature. After stirred for 2 h at room temperature, the solvent was removed off under reduced pressure and the residue was eluted with ether/petroleum ether through a short silica gel to give 0.26 g (68%) of carbodiimide **3b** as white solid. Mp: 152–154 °C. IR (KBr): 3417, 3230, 3106, 2140, 1701, 1641 cm⁻¹. ¹H NMR (CDCl₃, 600 MHz): δ 8.02 (s, 1H), 7.36–7.10 (m, 9H), 5.86 (s, 1H), 5.83 (s, 1H), 4.05 (q, J=7.2 Hz, 2H), 2.44 (s, 3H),1.10 (t, J=7.2 Hz, 3H). MS m/z: 376 (M⁺, 97), 347 (38), 303 (90), 284 (99), 260 (100). Anal. Calcd for C₂₁H₂₀N₄O₃: C, 67.01; H, 5.36; N, 14.88. Found: C, 67.24; H, 5.49; N, 14.81.

4.7.2. 5-Ethoxycarbonyl-4-(2-((isopropylimino)methyleneamino)-phenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (**3f**). Operation as above with isopropylisocyanate (0.09 g, 1 mmol) at refluxing temperature for 4 h, compound **3f** (0.28 g, 82%) was also isolated as white solid. Mp: 265–267 °C. IR (KBr): 3227, 3103, 2124, 1692, 1637 cm $^{-1}$. ¹H NMR (CDCl₃, 600 MHz): δ 8.41 (s, 1H, NH), 7.22–7.01 (m, 4H, Ar–H), 5.88 (s, 1H, NH), 5.78 (s, 1H, CH), 4.03 (q, J=7.2 Hz, 2H, OCH₂), 3.88–3.83 (m, 1H, NCH), 2.42 (s, 3H, CH₃), 1.37 (d, J=6.6 Hz, 6H, CH₃), 1.08 (t, J=7.2 Hz, 3H, CH₃). MS m/z: 342 (M $^+$, 78), 313 (68), 277 (100), 227 (88), 226 (65), 199 (63), 183 (76). Anal. Calcd for C₁₈H₂₂N₄O₃: C, 63.14; H, 6.48; N, 16.36. Found: C, 63.06; H, 6.62; N, 16.14.

4.7.3. 1,6-Dimethyl-5-ethoxycarbonyl-4-(2-((isopropylimino)methyleneamino)phenyl)-3,4-dihydropyrimidin-2(1H)-one (**3j**). Operation as above with azide **1d** (0.32 g, 1 mmol) and isopropylisocyanate (0.09 g, 1 mmol) at refluxing temperature for 4 h, compound **3j** (0.31 g, 86%) was also isolated as white solid. Mp: 124–125 °C. IR (KBr): 3417, 3244, 2978, 2137, 1679, 1629 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 7.19–7.02 (m, 4H, Ar–H), 5.90 (s, 1H, NH), 5.70 (d, J=3.2 Hz, 1H, CH), 4.10–4.01 (m, 2H, OCH₂), 3.90–3.83 (m, 1H, NCH), 3.18 (s, 3H, NCH₃), 2.62 (s, 3H, CH₃), 1.38 (d, J=3.2 Hz, 6H, 2CH₃), 1.09 (t, J=7.2 Hz, 3H, CH₃). Anal. Calcd for C₁₉H₂₄N₄O₃: C, 64.03; H, 6.79; N, 15.72. Found: C, 64.11; H, 6.67; N, 15.94.

4.7.4. 5-Ethoxycarbonyl-4-(2-isothiocyanatophenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one ($\it{5b}$). To a solution of iminophosphorane $\it{2b}$ (0.55 g, 1 mmol) in CH₃CN (5 mL) was added CS₂ (5 mL) at room temperature. After the reaction mixture was refluxed for 12 h, the solvent was removed off under reduced pressure and the residue was eluted with ether/petroleum ether through a short silica gel to give 0.28 g (87%) of isothiocyanate $\it{5b}$ as white solid. Mp: 247–248 °C. IR (KBr): 3357, 3116, 2977, 2089, 1698, 1635 cm⁻¹. ¹H NMR (CDCl₃, 600 MHz): $\it{\delta}$ 8.62 (s, 1H, NH), 7.31–7.23 (m, 4H, Ar–H), 5.85 (s, 1H, NH), 5.71 (s, 1H, CH), 4.03 (q, \it{J} =7.2 Hz, 2H, OCH₂), 2.41 (s, 3H, CH₃), 1.11 (t, \it{J} =7.2 Hz, 3H, CH₃). MS $\it{m/z}$: 317 (M⁺, 8), 284 (82), 243 (100), 183 (86), 155 (56), 137

(62). Anal. Calcd for $C_{15}H_{15}N_3O_3S$: C, 56.77; H, 4.76; N, 13.24. Found: C, 56.94; H, 4.70; N, 13.12.

5. Crystallographic material

Compound **8a**: formula C₂₁H₁₉N₃O₂S, yellow crystal. The crystal is of monoclinic, space group P2(1)/n with a=9.6802(6) Å, b=19.7155 (10) Å, c=10.3032(6) Å, β =104.431(1)°, V=1904.32(19) ų, Z=4, D_c =1.317 g/cm³, F(000)=792, μ =0.191 mm⁻¹, R=0.0418 and wR=0.0449 for 4134 observed reflections with I>2 σ (I₀). Crystallographic data for **8a** have been deposited in the Cambridge Crystallographic Data Center as supplementary publication numbers CCDC 761594. Copies of the data may be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk).

Acknowledgements

We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (No. 20772041) and the Doctor Independent Foundation of Central China Normal University (No. 2009011).

Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2010.08.046. These data include MOL files and InChiKeys of the most important compounds described in this article.

References and notes

- (a) Zhu, J.; Bienaymé, H. Multicomponent Reactions; Wiley-VCH: New York, NY, 2005; (b) Dondoni, A.; Massi, A. Acc. Chem. Res. 2006, 39, 451.
- 2. Ramón, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005, 44, 1602.
- 3. (a) Kappe, C. O. Eur. J. Med. Chem. **2000**, 35, 1043; (b) Russowsky, D.; Canto, R. F. S.; Sanches, S. A. A.; D'Oca, M. G. M.; Fatima, A. D.; Carvalho, J. E. D. Bioorg. Chem. **2006**, 34, 173; (c) Rovnyak, G. C.; Atwal, K. S.; Hedberg, A.; Kimball, S. D.; Moreland, S.; Gougoutas, J. Z.; O'Reilly, B. C.; Schwartz, J.; Malley, M. F. J. Med. Chem. **1992**, 35, 3254; (d) Brier, S.; Lemaire, D.; DeBonis, S.; Forest, E.; Kozielski, F. Biochemistry **2004**, 43, 13072.
- 4. Ryabukhin, S. V.; Plaskon, A. S.; Ostapchuk, E. N.; Volochnyuk, D. M.; Shishkin, O. V.; Shivanyuk, A. N.; Tolmachev, A. A. *Org. Lett.* **2007**, *9*, 4215.
- Patil, A. D.; Kumar, N. V.; Kokke, W. C.; Bean, M. F.; Freyer, A. J.; De Brosse, C.; Mai, S.; Truneh, A.; Faulkner, D. J.; Carte, B.; Breen, A. L.; Hertzberg, R. P.; Johnson, R. K.; Westley, J. W.; Potts, B. C. M. J. Org. Chem. 1995, 60, 1182.
 (a) Lu, J.; Bai, Y. Synthesis 2002, 466; (b) Kumar, K. A.; Kasthuraiah, M.; Reddy, C.
- (a) Lu, J.; Bai, Y. Synthesis 2002, 466; (b) Kumar, K. A.; Kasthuraiah, M.; Reddy, C. S.; Reddy, C. D. Tetrahedron Lett. 2001, 42, 7873; (c) Reddy, C. V.; Mahesh, M.; Raju, P. V. K.; Babu, T. R.; Reddy, V. V. N. Tetrahedron Lett. 2002, 43, 2657; (d) Ranu, B. C.; Hajra, A.; Jana, U. J. Org. Chem. 2000, 65, 6270; (e) Jenner, G. Tetrahedron Lett. 2004, 45, 6195; (f) Ramaliga, K.; Vijayalakshmi, P.; Kaimal, T. N. B. Synlett 2001, 863; (g) Hu, E. H.; Sidler, D. R.; Dolling, U.-H. J. Org. Chem. 1998, 63, 3454.
- 7. Matache, M.; Dobrota, C.; Bogdan, N. D.; Dumitru, I.; Ruta, L. L.; Paraschivescu, C. C.; Farcasanu, I. C.; Baciu, I.; Funeriu, D. P. *Tetrahedron* **2009**, *65*, 5949.
- (a) Wichmann, J.; Adam, G.; Kolczewski, S.; Mutel, V.; Woltering, T. Bioorg. Med. Chem. Lett. 1999, 9, 1573; (b) Shroff, J. R.; Loev, B. U.S. Patent 4,478,834, 1984.
- (a) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44, 5188; (b) Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.; Santos, J. M. Tetrahedron 2007, 63, 523; (c) Polienko, J. F.; Schanding, T.; Gatilov, Y. V.; Griggor'ev, I. A.; Voinov, M. A. J. Org. Chem. 2008, 73, 502; (d) Loos, P.; Riedrich, M.; Arndt, H.-D. Chem. Commun. 2009, 1900; (e) Marsden, S. P.; McGonagle, A. E.; McKeever-Abbas, B. Org. Lett. 2008, 10, 2589.
- (a) He, P.; Wu, J.; Nie, Y. B.; Ding, M. W. Eur. J. Org. Chem. 2010, 1088; (b) Huang, N. Y.; Liu, M. G.; Ding, M. W. J. Org. Chem. 2009, 74, 6874; (c) Ding, M. W.; Xu, S. Z.; Zhao, J. F. J. Org. Chem. 2004, 69, 8366; (d) He, P.; Wu, J.; Nie, Y. B.; Ding, M. W. Tetrahedron 2009, 65, 8563; (e) Huang, N. Y.; Liang, Y. J.; Ding, M. W.; Fu, L. W.; He, H. W. Bioorg. Med. Chem. Lett. 2009, 19, 831; (f) Liu, M. G.; Hu, Y. G.; Ding, M. W. Tetrahedron 2008, 64, 9052.
- (a) Sabitha, G.; Reddy, G. S. K. K.; Reddy, Ch. S.; Yadav, J. S. Synlett 2003, 858; (b) Kantevari, S.; Bantu, R.; Nagarapu, L. ARKIVOC 2006, xvi, 136; (c) Zhu, Y.; Pan, Y.; Huang, S. Synth. Commun. 2004, 34, 3167; (d) Ramalingan, C.; Kwak, Y.-W. Tetrahedron 2008, 64, 5023.
- Capperucci, A.; Degl'Innocenti, A.; Funicello, J. M.; Mauriello, G.; Scafato, P.; Spagnolo, P. J. Org. Chem. 1995, 60, 2254.